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ABSTRACT Wireless communication systems working in millimeter-wave (mmWave) frequency bands
offer higher bandwidths than traditional radio frequency schemes. This technology allows multibeam
steering and data multiplexing with the help of massive multiple-input multiple-output (MIMO) systems.
However, supporting large bandwidths at mmWave frequencies is challenging due to the use of large
antenna arrays with beamforming, sampling signals with large bandwidths, and baseband signal processing
operations at gigabit data rates. Due to the wider bandwidth and higher signal processing requirements of
mmWave systems, low-complexity receiver algorithms become important. Previously reported investigations
assumed the use of hybrid beamforming structures that reduce power consumption and signal processing
tasks. Therefore, the use of artificial neural networks (ANNs) becomes relevant for the processing of
mmWave signals as reported in earlier works. In this article, to carry out MIMO combining processing
for mmWave communications, we propose a fully complex multilayer extreme learning machine (M-ELM)
neural network. We investigate the tuning of the number of neurons in each hidden layer for the proposed
method to maximize the system performance and decrease the complexity of the receiver. We compare the
results of the introduced M-ELM algorithm with a fully complex extreme learning machine (ELM), fully
real ELM, and M-ELM defined in the real plane in terms of spectral efficiency, bit error rate, computational
complexity, and processing time. Furthermore, we compare the novel M-ELM strategy with traditional linear
MIMO receivers, such as Maximum Ratio and Minimum Mean Square Error, as well as to a multilayer
perceptron (MLP) neural network trained offline. The numerical results show that with a good balance
between the overall performance and computational cost of the ANN, the fully complex M-ELM MIMO
receiver outperforms the other evaluated schemes.

INDEX TERMS 5G NR, beamforming, machine learning, massive MIMO, millimeter wave, multilayer
ELM.

I. INTRODUCTION
Millimeter (mmWave) communication systems have received
wide public attention as part of the development of the

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei Liu.

VOLUME 10, 2022

fifth generation (5G) New Radio (NR) technology, which
provides low latency, more bandwidth, and higher data
rates [1]. The mmWave massive multiple input, multiple
output (MIMO) system can enhance the achievable Spectral
Efficiency (SE) by providing a large array gain. However,
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the high-resolution Analog-to-Digital (ADC) and Digital-
to-Analog (DAC) converters and the fully digital precoding
scheme result in high power consumption and unaffordable
hardware costs for these systems [2]. Furthermore, due
to the baseband signal processing at gigabit data rates,
support for large bandwidths at mmWave frequencies is
challenging. However, due to short wavelengths, mmWave
communications suffer from fundamental technical chal-
lenges, such as severe path loss, blockage sensitivity,
directivity, energy efficiency, and narrow beamwidth [3].
Essentially, Uplink Transmission (UL) in the mmWave
MIMO system presents these challenges because of the
low transmission power of mobile devices. Another related
problem in UL communication is interference between users,
which reduces the SE of the transmission. Therefore, it is
relevant to obtain a solution that maximizes the SE for
mmWave massive MIMO systems with low computational
complexity.

Typical signal processing methods, such as the maximum
ratio (MR) and minimum mean square error (MMSE)
algorithms used in MIMO receivers, are not optimized
to reduce computational complexity and communications
latency. Nevertheless, Machine Learning (ML) and Deep
Learning (DL) techniques can effectively address these
challenges [4]-[8]. ML and DL methods leverage prior
observations about channel estimation and precoding designs
to solve the MIMO combining task for mmWave systems,
significantly reducing the processing overhead. However, and
as stated in [9], not all DL techniques can outperform known
optimal solutions for wireless communications. As reviewed
in [10], a DL technique like a trained Multilayer Percep-
tron (MLP) neural network cannot outperform algorithms
like the MMSE receiver, from which the neural network
learns the MIMO combining process, since the bit error
rate (BER) is the same for both techniques. Thus, [9], [10],
ML and DL may present improvements compared to known
algorithms in communications, particularly in reducing the
computational complexity, such as the extreme learning
strategy described in [11]. Additionally, neural networks
can effectively reduce the effects of non-linear hardware,
interference, and frequency-selective channels [9].

Since channel estimation is relevant in conventional
receiver designs, ML and DL algorithms are used to
improve channel estimation efficiency and communication
quality [12]-[14]. In addition, many studies have investigated
the issue of joint channel estimation and signal detection [15].
Indeed, channel estimation is not an isolated process since
channel equalization requires precise Channel State Infor-
mation (CSI) to effectively remove signal distortions [16].
As a result, channel estimation and channel equalization
can be performed together, and even symbol detection
and channel decoding can be done together in one step.
However, symbol detection using DL methods showed lower
performance than with regular methods [17]. Furthermore,
processing time should be considered, as several methods can
achieve good wireless performance at the expense of more
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computational complexity. Even DL techniques can take a lot
of computational resources to learn specific tasks [15], [18].

Another important aspect of the ML and DL methods is
that good data sets are required. In this study, the data set
becomes the massive MIMO mmWave channels. Channel
modeling is a hard task since there is the need to predict
large- and small-scale propagation channel parameters with
a limited amount of measurement data, especially for
mmWave systems [10], [19], [20]. Several studies validate
that ELM-based algorithms outperform deep learning neural
networks in terms of computational cost for classification or
regression issues [21]—[23].

In this paper, we propose a fully complex multilayer
extreme learning machine (M-ELM) algorithm in order to
learn the MIMO combining process to improve the SE
of mmWave communications and minimize the use of
computational resources.

In contrast to conventional MIMO receivers such as MR
and MMSE, the M-ELM strategy does not require the CSI
through channel estimation, which simplifies processing
time, particularly useful for mmWave communications.
This investigation introduces an M-ELM that learns feature
representations by employing singular values based on
autoencoders (AEs), strictly defined in the complex domain.

A. RELATED WORK

The Extreme Learning Machine (ELM), introduced by Huang
in 2004 [24], comes to be a novel algorithm for optimizing
the Single-Hidden-Layer Feedforward Networks (SLFN) and
covers the disadvantages of the gradient descent method.
In the ELM algorithm, the input weights and bias of
the hidden layer of the SLFN are arbitrarily derived
without several iterations to obtain the optimal value and
remain unchanged during the training process [25]. In ELM
approaches, the hidden layer does not need to be adjusted and
is highlighted to solve the problem of generalization, since
the global optimum is theoretically displayed. Moreover,
setting hyperparameters takes a lot of time. In addition, the
ELM is widely used in many technological areas, especially
in telecommunications signal reception, due to the follow-
ing: (i) Easy implementation, (ii) extremely fast training
speed, and (iii) good generalization performance [11], [16],
[26]-[28].

The work in [24] is the first to introduce the ELM concept
as an SLFN network with a fast-learning speed thanks to
the random adoption of input weights and biases and the
minimum norm least-squares (LS) solution of the SLFN. The
authors conclude that the standard ELM can be used generally
in many cases, and this is the case for the work in [29]
which investigates the problem of jointly solving equalization
and symbol detection in orthogonal frequency division
multiplexing (OFDM) systems with quadrature amplitude
modulation (QAM). This study introduces the performance of
the standard ELM with fast training speeds compared to other
based methods. However, research is limited to single-input
single-output (SISO) systems, as in works [10], [30], [31].
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Nevertheless, the standard ELM requires setting a minimum
number of neurons in the single hidden layer to achieve good
performance. Therefore, for SISO systems, an ELM strategy
can achieve good results, but processing time should also be
considered [10].

Massive MIMO systems are a fundamental technology
used for beamforming in mmWave systems. The work
in [27] introduces an ELM receiver for MIMO light-emitting
diode (LED) communications with nonlinearities and cross-
LED interference. The work in [28] shows the performance
of a standard ELM used as a MIMO-OFDM receiver,
considering low-resolution ADCs. The investigation shows
a MIMO combining process learned online with the help of
reference signals. However, this study is limited to single-user
scenarios. The work in [26] considers multiuser scenarios
where the inter-user interference is the limiting factor. Finally,
the studies in [26], [28] are limited to low-band frequencies.

With traditional methods such as MR and MMSE, it is
necessary to estimate the MIMO channel and then find the
MIMO combiner that performs channel equalization [16],
[32]-[34]. On the contrary, with an ELM strategy, there is
no need to perform channel estimation, as MIMO combining
processing can be performed directly with this neural network
as shown in [26] for low-band frequencies and in [11] for
mmWave frequencies. However, these studies are limited to
the single-layer ELM method. The work in [10] compares the
performance of the ELM method with linear MIMO receivers
and a DL approach called multilayer perceptron (MLP)
considering mmWave band frequencies. However, the study
is limited to SISO systems and a single-layer ELM strategy.

Since deep neural networks (DNNs) only work with real
numbers, there is a need to separate the complex input
for a DNN into real and imaginary parts. This process
represents a limitation for DNNSs, but not for an ELM strategy.
The advantage of the latter is the fast-learning speed and
simplicity since this neural network can work with complex
input numbers such as the received OFDM symbols in a
5G mobile communication. Since an OFDM communication
system requires processing complex numbers, an ELM
strategy is applied directly to learn the MIMO processing
task without requiring a real domain input. However, the
investigation in [35] takes into account the standard ELM in
the real domain.

An M-ELM network not only inherits the characteristics
of the hyperparameters of a single layer ELM [36] but also
achieves better performance [37]. However, previous studies
outline the performance of real domain multi-layer ELM
networks such as the works in [25], [38]-[40] for tasks
that are not related to MIMO processing. In this article,
we consider a complex M-ELM neural network to solve the
MIMO combining problem. We compare the performance of
this complex domain network to the real domain M-ELM,
especially in terms of processing time.

B. RESEARCH CONTRIBUTIONS
The contributions of this work are summarized as follows:
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1) We have designed an M-ELM network to perform
MIMO processing of received signals with reduced
computational complexity compared to a single-layer
ELM. We have considered a single-cell, multiuser
mmWave system, and no perfect CSI at the receiver.
Specifically, there is no channel estimation process
performed with the M-ELM strategy.

2) We have provided an analysis of the introduced
M-ELM method by tuning the hyperparameters of the
network, such as the number of hidden layers and
the number of neurons per layer, to perform MIMO
combining processing in one step, in order to reduce the
processing time compared to a single-layer strategy.

3) We have tested the performance of the novel M-ELM
receiver in terms of the achievable SE, bit error rate
(BER), and average processing time. The performance
of the M-ELM strategy was compared to that of
the single-layer ELM method for the complex and
real domains, as well as the MR and MMSE MIMO
receivers.

The remainder of the paper is organized as follows.
Section II presents the signal and channel model, as well
as the channel estimation and equalization processes. The
proposed M-ELM algorithm is introduced in Section III. The
simulation results are provided in Section IV. Section V
presents an analysis and discussion of the results. Finally,
Section VI outlines the conclusions of this investigation.

Notation: Scalars are denoted in the lower case, whereas
matrices and vectors are represented in bold upper and lower
case, respectively. For any general matrix or vector, X!
represents the transpose and x* the conjugate transpose. I
is an identity matrix of proper dimension. |.||r represents
the Frobenius norm operator. E[.], C, and N denotes the
expected value, and the set of complex and natural numbers,
respectively. Finally, a circular symmetric complex Gaussian
stochastic vector is written as x ~ CA (ux, 07) with mean

: 2
Mx and variance oy.

Il. SYSTEM DESCRIPTION

In this section, we present the multiuser mmWave signal
and channel model, as well as the channel estimation and
equalization processes considered in this work.

A. SIGNAL MODEL
We considered a single cell multiuser hybrid beamforming
mmWave system based on the 5G NR standard. The
simulation of radio links, based on cyclic prefix orthogonal
frequency division multiplexing (CP-OFDM) communica-
tion, employs s subcarriers to transmit Ny data symbols per
link. The radio link consists of a base station equipped
with a massive array of antennas, which communicates
with multi-antenna user equipment (UE), as is illustrated in
Fig. 1 [10].

Fig. 1 shows that random bits (data bitstream) are mapped
to data symbols modulated with the quadrature phase shift
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FIGURE 1. Simplified hardware block diagram of the CP-OFDM mmWave system.

keying (QPSK) or quadrature amplitude modulation (QAM)
schemes. The data symbols must be multiplexed with
CP-OFDM to perform a wideband transmission through
the mmWave channel. The multiantenna receiver performs
symbol demodulation to recover the original data. Therefore,
for this study, we simulate OFDM symbols which are
complex numbers that are configured following the 5G NR
specifications [1], [41].

OFDM modulation offers high data rate transmission over
a multipath fading channel, high SE, and low-complexity
implementation due to the Fast Fourier Transform (FFT)
algorithm [42]. This transmission technique can also scale
the number of subcarriers, so the FFT size scales such
that processing complexity does not increase unnecessarily
for larger bandwidths. Furthermore, OFDM can work with
massive MIMO systems to achieve high antenna diversity and
spatial multiplexing [11], [43].

The hardware architecture shown in Fig. 2 represents a
fully connected hybrid beamforming BS at the receiver side.
At BS, there are L, radio-frequency (RF) chains, whereas
there are K multiantenna users, each equipped with a single
RF chain [34], [44], [45].

As shown in Fig. 2, K users can transmit simultaneously
to the BS by applying baseband precoding, fgg, for user
k=12...,K,ie, Fgg, = [fBB1 BB, ..., fBBK] to
transmit their respective signals followed by an RF precoder
FRrr, using analog circuitry (phase shifters). The CP-OFDM
multi-carrier scheme suppresses intersymbol interference by

mapping modulated symbols into N subcarriers, in this way
the transmitted signal k is precoded as Frg,fgp, [s]xk[s]
V s = 0,1,2,...Ng — 1, where the transmitted
symbol of the k™ user in subcarrier s is represented
as x[s] [34], [44].

Assuming that all users transmit simultaneously in the UL
to the BS, the s subcarrier reference signal yf [s] € CM
received in the BS and transmitted by the k™ user is given
by

K
velsl = Wi, Hels] Y Fre, fap, [slgels] + vels],
k=1

ey

where WEFk is the analog combining matrix for the k" user
at the mmWave BS, Hg[s] is the channel matrix between
the BS, equipped with LN, antennas and the k" user,
each equipped with N; antennas. ¢[s] denotes the k™ user
transmitted reference symbol mapped at pilot subcarrier s.
It is worth noting that not all subcarriers are used for pilot
transmission. This is a characteristic of the pilot structure
defined in the 5G NR standard, which allows multiuser
multiplexing [41]. Finally, vi[s] represents the circularly
symmetric white Gaussian noise vector characterized as i.i.d
CN (0, oT) [34], [45].

On the other hand, the k™ received data signal at the BS,
yilsl € CM, for a frequency domain block fading channel is
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FIGURE 2. Simplified system blocks of an UL multiuser mmWave system with a fully-connected hybrid array of

antennas.
written as
K
Yils] = Wgg, Hls] ZFRkaBBk [shxels] + vi[s] € CMr.
k=1

@

B. CHANNEL MODEL

Since we considered a massive MIMO mmWave system,
the high path loss limits spatial selectivity, and the hybrid
structure at the mmWave wavelength assumes the use
of a tightly packet antenna array, which leads to high
antenna correlation [44]. Therefore, the mmWave massive
MIMO channel is assumed to be frequency selective and is
represented by the clustered channel model. The d” delay
tap of the k™ user discrete-time N; x N; channel matrix Hy x,
ford = 1,2, ., N, assumed as the summation of
N scattering clusters, each contributing Ny,y propagation
paths [45], is written as

Ny Nray

_ T r * t t
Ha _)‘ZZ e ke (Qm,k’ ¢m,k) a (Qm,k’ ¢m,k) J

n=li=1

3

where A = /NN;% is the scalar normalization factor, and
Cl ray

oy, k is the complex small-scale fading gain of the " ray in

the n™" scattering cluster, characterized as i.i.d. CA/ (O, 03),

where O',? denotes the average power of the n”* cluster.

The vectors a, (0:”’,(, ¢fﬂ’k> and aj (9}7[7,(, ¢}7[7k) denote
the array response functions, for the receive and transmit
antenna arrays of the k™ user, with respect to the angles of
arrival ¢}, (921, k) and departure d)}%k (9,‘7!’ k), respectively,
at an azimuth 6 and an elevation angle ¢ [46]. Finally, based
on [45], [47], the channel frequency response of the user k in
subcarrier s, from N, delay taps in the discrete time domain
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is given by
N >
Hils] = ) Hyge /%4 e CV @
d=1

C. CHANNEL ESTIMATION

To estimate the mmWave channel, we first define an effective
channel that is equivalent to the convolution of the hybrid
beamformer and the channel response in the frequency
domain, written as

her, [s] = Wip, He[sIFrr, fBB, [5] € cM. )

By transmitting reference symbols on variously known
pilot subcarriers, CSI estimation can be performed with dif-
ferent channel estimation methods [48]. A simple estimation
technique is the least squares (LS) algorithm. Based on the
evidence presented in [49], the LS estimation can result
in an imprecise measurement of the CSI when noise and
interference are high, given that this technique does not
consider the correlation properties of the channel [16]. The
LS estimator is given by

hetr, [s] = hL3 [s] = ¥{ [s]o [s]* € CV. 6)

With the LS estimation, we can obtain first- and
second-order statistics of channel parameters such as the
variance of the effective estimated channel vector O’}%. These
parameters of the mmWave channel must be known a priori to
perform MMSE estimation [16], [50], [51], which is written
as

ﬁeffk [s] = hMMSE[4)

effy

-1
= op¢” 15 (039 sl 6" s + 07) € T,
(N

where akz denotes the k™ user noise variance at the receiver.
Consider that the proposed M-ELM strategy does not

require performing channel estimation. However, this process

is required by linear MIMO receivers, such as the MMSE and
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MR receivers, in order to perform channel equalization [52],
as described in the next subsection.

D. CHANNEL EQUALIZATION
In this section, we describe two common linear MIMO
receivers that are frequently used to perform the channel
equalization task at the receiver [32], [33].

MR processing computes the combining vector wBBkMR [s]
with the estimated effective channel at the s subcarrier of
the received OFDM signal [41], hegy, [s], as follows

1 D, [s]
wegy[s] = weg) R[s] = B CALNG )

~ 2
VP fog, 151 HF

Another MIMO receiver most studied in the literature is
the MMSE combiner [16], [26], [32]-[34], [41], [44], [45],
[53]. For MMSE processing, we can group the CSI of the K
users in the cell of interest in a single matrix as follows

H = [hefr, [5], - . ., Befr 5], - . ., herr [sT]T € CEMro (9)

According to [41], the MMSE combining vector,
WBB,I(V[MSE[S], can be written as

weBls] = weg} o [s]
1 (A Hyj ANy N,
= — (A"A+o 1) he, [s] € CV. (10)
m k CHly
Therefore, the MIMO receiver problem reduces to finding
acombining vector that recovers the transmitted data symbols
written as

Xk[s] = wgp, [s]yg[s]

K
= Wig, [sThers, [s1xc[s] + > +/Wgg, [sThess,xj[s]
j=1
J#k
+ wap, [SIWkg, Vi[s], (11)
where WEBk [s] is the k™ user baseband (BB) combiner
that maximizes the data symbol power, forcing to zero
interference signals and nonlinear distortions, whereas heffj

and x;[s] represent the effective channel and the transmitted
symbol of the j” interfering user, respectively.

E. SPECTRAL EFFICIENCY

In this work, we considered the UL bound capacity to get
the SE expression. Therefore, as in [52], Cg[s] is defined
as the corresponding estimation error covariance matrix of
the k" user effective channel. This way, the k™ user SE per
subcarrier in the UL is given by

SEx = E {log, (1 4+ SINRy)}, (12)

where SINRg[s] represents the signal-to-interference plus
noise ratio (SINR) of the k” user, which is written
in (13), as shown at the bottom of the next page.

However, SE cannot be calculated in the same way with an
ELM method, since there is no estimated channel with this

6

strategy [10], [26]. Therefore, the SINR can also be computed
as

SINR[s] = —[PAPR + 20log;o(EVM[s]/100%)],
(14)

where PAPR is given per modulation scheme, i.e., the PAPR
value corresponds to 0 dB, 2.6 dB, 3.7 dB, and 4.2 dB
for the quadrature phase shift keying (QPSK) modulation,
16-quadrature amplitude modulation (16-QAM), 64-QAM,
and 256-QAM, respectively, [26]. The error vector magni-
tude (EVM) of the s subcarrier of the user k, (EVMy[s]),
is calculated with the combined symbols in the receiver based
on the Euclidean distance between the combined symbols and
their perfect constellation points.

Ill. EXTREME LEARNING MACHINE STRATEGIES

In this section, we introduce the design of a single-layer
ELM receiver and the proposed M-ELM (both methods are
strictly defined in the complex domain). It is important to
mention that the former was initially presented in [26] for
multiuser massive MIMO systems, as well as in [10], [11]
for mmWave channels simulated at 28 GHz. In this study,
the M-ELM receiver will be introduced for mmWave massive
MIMO systems.

A. MIMO COMBINING BASED ON AN EXTREME
LEARNING MACHINE

The input of the artificial neural network (ANN) is the signal
received from the user k, and the output is the combined
MIMO symbols. Traditional methods like MR and MMSE
require first estimating the MIMO channel and then finding
the MIMO combiner that equalizes the channel.

ELM learning can be applied in the complex domain taking
as input the received pilot signal matrix Y, = {yf[l], cee
yf [NS]}T and as output the pilot vector ¢, = {¢k[l], ce,
dr [Ns] }T, known a priori in the BS, as illustrated in Fig. 3.
The goal of the ELM strategy is to learn the MIMO combining
process from the training data (in this case, the pilot symbols)
that gives the best prediction when the unknown data symbols
share the same modulation as the pilots [11], [26], [54].
By doing so, only the desired signal is maximized, while
interference signals and non-linear distortions are attenuated.

A significant advantage of the ELM neural network is that
this method can perform MIMO combining online because of
the training phase. which consists of the random origination
of the hidden neurons, so that the output weights can be
found through a regularized least squares process [55]. This
means that the ELM network does not require offline training
as with ANNs based on the stochastic gradient descent
algorithm [26], and DNN strategies [56].

The k" ELM receiver, where the pilot signal matrix Yf
is used at the input of the neural network, which consists
of L hidden nodes between the input and output layers,
is represented by ¢, = Of B, where B, € CL is the output
weight vector between the hidden layer of L nodes to the

VOLUME 10, 2022
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single output node, and Of e CM*L represents the hidden
layer output matrix, and is given by

a@l Y11+ bey) -+ a@l, y? 111+ bir)
o} = : . : ’

a(@! 2 [Ns] + bry) - - a(@l, ¥ INS] + bir)
(15)

where a(-) is the complex activation function of the hidden
layer, which includes circular, inverse circular, hyperbolic,
and inverse hyperbolic functions, as is described in [57]. The
k™ input weights, @i, = [@kal, ..., 0y, 1T € CM and
the biases by, of the hidden node n, forn = 1,...,L, are
randomly initialized and fixed without tuning for the ELM

N > L is written as

-1
B = (0f"0f) 0f"g,. (16)

After the ELM receiver is trained, we can use the data
signal Yy = {yx[1], ..., ¥k [Ns]}T at the input of the neural
network, as is illustrated in Fig. 3. Therefore, a new data
output weight vector Oy € CMs*L is processed as

a(wl i1 +br1) -+ a(@i yi[1]+ bi)
O = : :
a(@ Y INs] + bi1) - -+ a(@]; i [Ns] + bir)

training step. Specifically, the output weight vector when a7
Hr n 2
[ wasfisThis]
SINRg [s] = < — . (13)
~ 2
> |wenlllsthils] + 3 wanlIsIClsIwanels] + |was, [s]]
iZk =
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Finally, the last step is to perform MIMO processing with
the trained ELM output weight vector as follows:

Xk = OBy, (18)

where % = {&[1],.... % [NS]}T denotes the detected data
symbols in the output layer of the ELM network [26], [58].
Note that @y, and by, in (15) are fixed after training with ELM
and reused in (17).

The steps for performing MIMO processing with a
complex ELM algorithm are summarized below.

1) Set the complex activation function a(.).

2) Randomly choose the complex input weight wy, and
the complex bias by;,.

3) Calculate the complex hidden layer output matrix O,‘f
with the received pilot signal matrix Yf using (15).

4) Calculate the output weight vector f; using (16).

5) Calculate the complex hidden layer output matrix Oy
with the received data signal matrix Y in (16) using
the same input weight and bias as in Step two.

6) Perform MIMO processing with the trained ELM
output using (17).

B. MIMO COMBINING BASED ON A MULTILAYER
EXTREME LEARNING MACHINE

The characteristics of the data set determine the generaliz-
ability of any machine learning algorithm [55]. Therefore,
the design of the features that a prominent data structure
can represent is relevant. However, this task requires subject
matter expertise to identify appropriate characteristics [59].
AEs can perform feature engineering and may be used to
train an ANN with several hidden layers [60]. In this sense,
an AE represents an unsupervised ANN where the outputs
and inputs are the same for the AE by reproducing the input
signal as much as possible.

Fully complex AEs are adopted as the basic building
block of M-ELMs, whose training architecture is structurally
separated into unsupervised hierarchical feature represen-
tation and supervised feature classification [25]. While
ELM-AE is being developed to obtain multilayer sparse
features of the input data for the former stage; for the latter
phase, the standard ELM is performed for final decision
making. Based on the supervised learning performed by the
standard ELM (previous subsection), the training procedure
for the unsupervised building blocks (AEs) in the M-ELM
architecture is highlighted here.

A single ELM-AE can be modeled by an input layer,
a hidden layer, and an output layer, as shown in Fig. 4 [60].
In this subsection, the k£ index for the ELM explanation is
removed for simplicity.

An ELM-AE is characterized by j input layer neurons,
n hidden layer neurons, j output layer neurons, and the
activation function of hidden neurons a(-) [40]. For Nj
different samples y¢[i] € Cy,xCj,i=1,---, N, theresults
of the hidden layer of ELM-AE and the relationship between

8

Input layer

Output layer

FIGURE 4. The network structure of the ELM-AE.

the outputs of the hidden layer can be written as
0 = a(wy? + b), 19)

whereas the results of the hidden ELM-AE layer and the
results of the output layer can be written as

o(y’[iDB = (¥’ LiDY, (20)

where w; denotes the input weight vector by joining the input
layer with the hidden layer i, and b; represents the bias weight
for the hidden layer j.

The standard ELM presents the next modification to
perform unsupervised learning: Input data is used as output
data. An ELM-AE is oriented to properly enact the input
features in three diverse forms: (1) compressed, which
represents features from a higher-dimensional input data
space to a lower-dimensional feature space, (2) sparse, which
is the opposite of compressed, and (3) equal dimension where
features maintain their dimensionality. The ELM-AE output
weights make it possible to switch from feature space to input
data. For all ELM-AE representations [25], the output weight
acquires the form of

_J©O"0)"'o"Y? Ny>n

p= oHoo")'y? N, <n’

2n
with O = [o1, - - - , oy,] being the hidden layer outputs from
ELM-AE and Y? the input and output data from ELM-AE.
Since O becomes the projected feature space of Y% subject
to the activation function, the output weight of ELM-AE can
appropriately extract the features of the input data through
singular values.

The ELM-AE is stacked layer by layer according to
a hierarchical structure. Before the supervised least mean
square (LMS) optimization, each weight of the M-ELM
hidden layer is initialized utilizing ELM-AE, which performs
unsupervised layer learning by excluding random feature
mapping. Mathematically, as in [60], the output of every
hidden layer is written as follows

O’ = a[(pH0™], (22)
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FIGURE 5. Model structure of the M-ELM receiver.

where O represents the i hidden layer output matrix (the

input layer occurs for i — 1 = 0; hence, the inputs of M-ELM
are given by O~!). Once the feature of the previously
hidden layer is calculated, the weights and hyperparameters
(the activation function and the number of hidden neurons)
of the current hidden layer are fixed. AE employs the
encoded results to address the original inputs by reducing the
reconstruction errors.

The output of the connections between the last hidden layer
and the output node ¢[i] € Cy, x Cp,i=1,---, N;, can be
analytically determined with the resolution of a linear system
such as for the standard ELM [55]. The M-ELM model is
shown in Fig. 5, where y?[i] denotes the output weights of
ELM-AE. The input of ELM-AE is O'~!, and the number
of hidden layer nodes of ELM-AE matches the number of
hidden nodes i of M-ELM in the case of the parameters
between the hidden layer M-ELM i”* and the hidden layer
i — 1 of M-ELM that ELM-AE learns. Finally, we represent
the number of neurons in each of the hidden layers of i
as n;.

IV. RESULTS
In this section, we present the parameters of the propagation
environment and the ELM strategies considered in this study,
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Hidden layers

Output layer

as well as the simulation results to demonstrate the overall
performance of the new M-ELM receiver introduced in
Section III-B.

A. PARAMETERS OF THE EVALUATED SCENARIO

The simulation parameters are given in Table 1, based on
the NR specifications developed by the Third Generation
Partnership Project (3GPP), Release 15 [1], and parameters
of the phased array antenna set for 5G radios in the 28 GHz
band, as described in [41], [61], [62]. We simulated
the channels between the K users and the BS with the
quasi-deterministic radio channel generator (QuaDRiGa),
which is software coded in Matlab and developed by the
Fraunhofer Institute for Telecommunications [63]. Specifi-
cally, in QuaDRiGa software, we used the mmMAGIC urban
microcellular (UMi) cluster channel model [64], a frequency-
selective mmWave channel as the general model described in
Section II-B.

In this work, we selected 16-QAM and 64-QAM as pilot
and data modulation schemes for simulation. In addition,
we did not have to do much data processing before the
training module with the M-ELM neural network as this
strategy can handle complex data entries. Finally, we used
10 dBm of equivalent isotropically radiated power (EIRP),
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TABLE 1. Simulation parameters [1], [63].

Parameter Value
BS height 10 m
BS position 0, 0 (x,y coordinates in [m])
Users height 1.5 m for the four users
Users position random position to the east-side of the BS

Cell radius 250 m

Channel model mmMagic UMi

Operating band n257

Carrier frequency 28 GHz

Carrier type CP-OFDM (120 kHz of subcarrier spacing)
Channel coherence time 20 ms

Carrier bandwidth 100 MHz

EIRP 10 dBm

Occupied subcarriers 792 subcarriers per OFDM symbol

FFT size 1024
12 subcarriers per PRB,
14 OFDM symbols per slot / subframe,
66 PRBs
LS (for the MR and MMSE receivers only)
MR, MMSE, ELM, real ELM, M-ELM, and
real M-ELM
Total noise power —86.521 dBm
Fully-connected BS antenna properties [62], [63]
Number of antenna panels | 1

NR data slot

Channel estimation
MIMO combining

Number of antenna | 16 X 16 array with dual polarization
elements per panel (M = 512)

Element separation | 0.55 A\

distance

Number of RF chains / | 8

beams

Peak beam gain (dBi) 27

the gain from the product of the transmitter power, and the
antenna array gain.

Fig. 6 shows the fully connected hybrid simulated array
composed of a single panel of 16 x 16 dual-polarized
antennas. Each polarized array is connected to four RF
chains. This hybrid structure consists of 512 antennas, where
256 antennas have vertical polarization, whereas the other
256 antennas have horizontal polarization [61], [62].

B. PARAMETERS OF THE ELM STRATEGIES

For ELM strategies, pilots must follow the same modulation
scheme as data symbols to ensure a successful learning stage
and thus maximize wireless performance [26], [35], [65].
The OFDM signals received with S subcarriers per symbol
introduced in (1) are the complex numbers that we used as
input to train the proposed M-ELM network. That is, with this
strategy, we did not have to do extensive data processing prior
to the training module. Although, we have used thousands
of channel samples to simulate the stochastic behavior of a
mobile scenario.

In this study, to explore the advantages and disadvantages
of our proposal, we present various versions of the ELM
neural network such as ELM, fully real ELM, M-ELM, and
fully real M-ELM (M-ELM is strictly defined in the complex
domain). In this sense, we present hyperparameters for the
different ELM strategies to maximize their generalizability.
We adjusted the hyperparameters of the proposed model
by exhaustive search, such as the number of neurons per
hidden layer, the number of hidden layers, and the activation
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FIGURE 6. Antenna array at the mmWave BS equipped with a
fully-connected hybrid structure.

function. We have also validated the proposed algorithm
with respect to the achievable spectral efficiency parameter,
as described in Section II-E.

For the approaches of the ELM and M-ELM neural
networks (complex domain), we set the activation function
tanh since a smaller BER can be achieved compared to other
functions [26], [65]. The weights and biases between the
input and hidden layers were generated following a uniform
distribution in the interval [-0.005, 0.005], which consists of
the activation function’s region of convergence (ROC) [26].
For ELM and M-ELM in the real domain, we adopt the
sigmoid activation function because it shows superiority in
terms of computational cost and prediction accuracy in the
context of ELM [66]. The hidden neuron parameters were
randomly derived based on a uniform distribution defined
from -1 to 1 [35]

The ELM hyperparameters that enhance the BER are
briefly exposed as

1) ELM: According to [26], we set the number of
neurons in the single hidden layer as the number
of antennas dedicated per user in the BS, therefore
L = 64.

2) Real ELM: The number of hidden neurons and the
regularization parameter, which is useful to improve
the stability of the ELM, are 120 and 228, respectively.
This configuration was performed by looking at
the performance of the system in terms of these
hyperparameters for various levels of SNR. Note that
this ELM must work with strictly real information
(a single constellation symbol is decomposed in its
in-phase and quadrature components). Consequently,
the input layer of a real ELM strategy is composed of
twice the number of antennas at the BS while it has
two output neurons (one for each component of the
constellation symbol). More details about the real ELM
as an equalizer can be found in [35], where this strategy
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FIGURE 7. M-ELM hyperparameters optimization with fixed SNRs of (a) 4 dB, (b) 8 dB, (c) and 12 dB.

TABLE 2. Log;o(BER) numerical results for the proposed complex M-ELM receiver when the number of neurons in the first and second layer matches.

SNR Neurons in the first (n1) and second (n2) hidden layers log;o(BER)
16 24 32 40 48 56 64 72 80
4dB 224864 | -2.5219 | -2.5401 | -2.5448 | -2.5472 | -2.5471 | -2.5519 | -2.5219 | -2.4962
8 dB -3.0697 | -3.1074 | -3.1192 | -3.1227 | -3.1262 | -3.1209 | -3.1263 | -3.0705 | -3.0327
12dB -3.7928 | -3.8076 | -3.8268 | -3.8242 | -3.8073 | -3.8209 | -3.8257 | -3.7268 | -3.6509
Average | -3.1163 | -3.1456 | -3.1620 | -3.1639 | -3.1602 | -3.1629 | -3.1679 | -3.1064 | -3.0599

is introduced for diminishing the laser phase noise in
coherent optical OFDM systems (SISO systems).
M-ELM: We set 16 neurons in each of the two hidden
layers (n; = ny = 16). This adoption comes from the
performance results presented in Section IV-C, as well
as to reduce the computational cost of the proposed
M-ELM receiver.

Real M-ELM: Based on an exhaustive optimization
procedure, the number of neurons in the first and
second hidden layers corresponds to 80 and 40,
respectively. The three regularization parameters (one
between each layer of the ELM) are set to O for the sake
of simplicity of equalization. Since this ELM comes to
be a modified/improved version of the real ELM [35],
italso possesses 128 input neurons (a BS equipped with
Nr = 64 receiving antennas) and two neurons defined
in the real domain.

3)

4)

C. NUMERICAL RESULTS

In Fig. 7, we probed the performance of the proposed
complex M-ELM receiver, varying the number of neurons
in the first and second hidden layers. In this way, we tested
the appropriate number of neurons to be configured in
each of the hidden M-ELM layers that result in a lower
BER.

As shown in Fig. 7, for the proposed M-ELM strategy,
when the number of neurons in the first and second layers
coincides, the achievable BER is smaller. These results reveal
that it is not necessary to set a high number of neurons in
each of the hidden layers of the M-ELM receiver since only a
few neurons are needed to decrease the BER and enhance the
SE. In general, the compressed representation (from a higher
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dimensional input data space to a lower-dimensional feature
space) is superior to the sparse representation in terms of the
BER metric. Furthermore, in Fig. 7, we can see a horizontal
line along the first layer of the M-ELM axis. This result
reveals that with 64 neurons (L = N,) in the first hidden
layer, we can achieve a low BER. Therefore, we can achieve
the same results with one hidden layer as with two hidden
layers. However, with fewer neurons and more layers, the size
of the matrices in each layer is smaller, so the processing task
is easier.

Furthermore, in Table 2 we present the numerical results
for BER achieved with different sets of neurons in the first
and second layers of the proposed M-ELM strategy. These
results correspond to Log;,BER with SNRs of 4dB, 8dB, and
12 dB, illustrated in Fig. 7.

Based on the data presented in Table 2, we can see that,
on average, the combination of neurons in the hidden layers of
the M-ELM receiver presents the same results. Furthermore,
we present the SE and BER results in Fig. 8, with pairs of 16,
20, and 24 neurons configured in the first and second layers
of the complex M-ELM strategy.

As shown in Fig. 8, there is no need to define a large
number of neurons in each of the hidden layers of the
proposed M-ELM receiver. With few neurons, we can achieve
SE and BER results similar to those of a high number
of neurons. Consequently, we set 16 neurons in each of
the hidden layers of the M-ELM strategy to reduce the
complexity of signal processing.

Second, to test the performance of the different MIMO
combining techniques presented in this study, in Fig. 9,
we show the average SE achieved by the k”* user on the
network with a 16-QAM modulation scheme.
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FIGURE 9. Achieved SE of the MR, MMSE, ELM, real ELM, M-ELM, and real
M-ELM MIMO receivers for 16-QAM modulation.

In Fig. 9, for the complex ELM and M-ELM strategies, the
average SE is almost the same. For most of the SNR range,
these ANNs outperform the real ELM and MMSE methods.
For the MR receiver, the average SE is low due to the
impact of non-linear distortions and the presence multiuser
interference. To complement the results obtained in Fig. 9,
we present the average SE for a 64-QAM modulation scheme
in Fig. 10.

As expected, in Fig. 10 the SE results with 64-QAM are
higher than 16-QAM for the techniques presented in this
study. However, the SE results achieved for 64-QAM with
MMSE are less than those achieved with 16-QAM.

In Fig. 11, we present the 16-QAM BER results achieved
for the different receivers to account for transmission errors.

12

9
o /,;)J\i\;(;).(i‘f(iﬂiﬂi)‘(f‘/:\?)
3
N
<
&
fﬁ\
)
m
wn
(]
en
<
=
[
E Real ELM
2t —&— M-ELM .
Real M-ELM
Lr ——MLP 1
0 L L L L L
0 5 10 15 20 25 30

SNR (dB)

FIGURE 10. Achieved SE of the MR, MMSE, ELM, real ELM, M-ELM, and
real M-ELM MIMO receivers for 64-QAM modulation.

The results in Fig. 11 reveal that both the complex ELM and
the real and complex M-ELM strategies have the lowest BER.
An average BER of 107 can be reached at 10 dB of SNR with
these ANN methods. The average BER achieved with real
ELM is slightly higher than that achieved with the complex
ELM and M-ELM (real and complex) techniques. However,
both MMSE and MR receivers show high BER curves. These
results show that ANN strategies can reduce the effects
of multiuser interference with more precision than linear
MIMO receivers (MMSE and MR). In Fig. 12 we present the
average BER results achieved with a 64-QAM modulation
scheme.

As expected, with a 64-QAM modulation scheme, the
results in Fig. 12 present higher BER curves than the
16-QAM results in Fig. 11. We can see that the bit error rate
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real M-ELM MIMO receivers for 64-QAM modulation.

with the Real ELM receiver increases, whereas the results of
ELM, M-ELM, and Real-ELM are slightly the same.

Finally, in Table 3, we present the processing time, in terms
of the sample mean and variance range over 2000 simulations,
to perform the MIMO combination task with the proposed
ANNs, as well as with the MR and MMSE receivers.
However, only for MR and MMSE processing, we have also
considered the processing time to perform channel estimation
as is described in Section II-C, since this process is not
performed with the proposed M-ELM strategy.

The results obtained in Table 3 depend on the hardware
on which the simulations were performed. Taking this into
account, the technical characteristics of the computer used to
perform the simulations are as follows:

o Processor: 3.3 GHz 10 Core Intel Xeon W processor
e Memory: 128 GB 2933 MHz DDR4
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TABLE 3. MIMO combining processing time.

Method Time (ms)
MR 179+ 1.8
MMSE 642.7 £ 40.6
ELM 200+ 1.6
Real ELM 272122
M-ELM 155+1.5
Real M-ELM 352+23
MLP 340.5 £ 20.7

TABLE 4. Floating-point operations for the different receivers.

Method Combining vector operations
MR Ny(4KN; — 1)
MMSE N, (NP + N2 (5K/2+2) + N: (K +1/2))
ELM K (L3 4+ L?> (3N, + 1/2) + L 2N, — 1/2))
M-ELM | Ki (M3 + M% (3N, + 1/2) + M (2N — 1/2))

o Software: Matlab R2019b

As in [26], we complement the results presented in Table 3
with the number of floating-point operations in analytical
form. The results obtained in Table 3 were obtained following
the methodology used in [26]. Table 4 presents the number
of floating-point operations for the receivers MR, MMSE,
ELM (the best demodulator reported in the literature) and the
novel M-ELM (proposed method), where M is the number of
neurons in the hidden layers for the M-ELM strategy, and L is
the number of neurons in the single layer of the ELM strategy.
Furthermore, M < L, and i represents the number of hidden
neurons for the proposed M-ELM strategy.

Taking into account the parameters of Table 1 and based
on the data presented in Table 4, when Ny = 792, K = 4,
N, = 64, the number of floating-point operations required
for MMSE is 246774528, whereas for ELM processing, the
floating-point operations are 40390528, that is, the ELM
algorithm requires 16.367 % of the operations required
for MMSE. Furthermore, the number of floating-point
operations for the M-ELM receiver is 5102528, which
represents 2.067 % of the operations required for MMSE
processing or 12.633 % of the operations required for the
single layer ELM neural network.

D. COMPARISON WITH A DNN APPROACH

A multilayer perceptron (MLP) is implemented and tested
to compare its performance with the ELM methods in
terms of BER, time complexity, and implementation. The
hyperparameters of this DNN were selected using a random
search approach. In this sense, we first define the maximum
and minimum values for the number of layers, the number
of neurons in each layer, the minibatch size for model
training, and the number of training epochs. The available
activation functions are fanh and ReLU. Hyperparameters
were randomly tested according to a uniform distribu-
tion. Finally, the hyperparameters with the best BER are
selected.
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The final structure of the MLP is the following: An
input layer with 2N, neurons, corresponding to the real and
imaginary components of the Ny subcarriers in the mmWave
signal. These are followed by 10 fully connected layers with
120, 100, 120, 100, 120, 100, 120, 100, 120, and 100 neurons,
respectively. After each fully connected layer, there follows
a batch normalization layer that helps to speed up the
DNN training process and reduce sensitivity to network
initialization. The activation function for each hidden layer is
tanh. Finally, we set the output, a regression layer, with 2N,
neurons corresponding to the real and imaginary components
of the N, subcarriers. We used the stochastic gradient
descent algorithm with a momentum of 0.9 and update the
network parameters with a learning rate of 0.001 and a
mini-batch size of 600 samples. Furthermore, we reduced
the learning rate by a factor of 0.99 after each set of
10 epochs.

As we can see in Figs. 9-10, the SE results achieved with
the MLP strategy for 16-QAM and 64-QAM modulations are
significantly lower than the results obtained with the revised
techniques in this work. Consequently, Figs. 11-12 present
higher BER results for the MLP strategy with 16-QAM
and 64-QAM. Although the MLP strategy produced efficient
results for mmWave communications with single antenna
systems, as presented in [10], the MLP neural network cannot
perform MIMO processing as the M-ELM strategy and linear
MIMO receivers can.

In terms of implementation, the ELMs methods present
relevant advantages with respect to a DNN technique. First,
a DNN requires much higher processing capabilities than
ELM methods. In other words, the DNN requires adjusting
the input to a vector of real numbers and a larger number of
operations to predict the same output. Additionally, an ELM
quickly adjusts (online training) to changes in the system.
However, a DNN model requires offline training to adapt to
new conditions in the system, such as a different location of
the mobile user terminal.

V. ANALYSIS AND DISCUSSION

There are optimized signal processing techniques that can
achieve better performance compared to MR and MMSE
receivers. However, these techniques require more compu-
tational resources. This is a limitation because the signal
processing task is higher for mmWave communications.

SE results with the ELM strategies are equal to or
higher than those obtained with the MMSE receiver and
higher than the SE results achieved with the MR combiner.
Moreover, we can see that the SE results obtained with
M-ELM can exceed 8 bits/s/Hz with a 64-QAM scheme,
even though this modulation scheme can only transmit
6 bits/symbol. This result is due to the number of antennas
in a communication system. Since mmWave systems use
large arrays of antennas, SE increases with the number of
antennas compared to SISO systems [52]. However, with
linear MIMO receivers (MMSE, MR), the growth in spectral
efficiency depends on how the multiple antenna channels
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are estimated, since an error in the estimation process
reduces the SINR and therefore reduces the SE, as described
in (12).

We can also see that the SE results obtained with M-ELM
can follow the same rule of SE for linear MIMO receivers,
even though there is no direct channel estimation with
this technique. However, the ELM strategies presented in
this study show lower BER results than the linear MIMO
receivers, that is, the MR and MMSE methods. However,
the ELM strategies presented in this study show smaller
BER results than the linear MIMO receivers, namely, the
MR and MMSE methods. This is due to the advantage
that ANNs present since the multiuser interference is
attenuated more precisely than with linear MIMO combin-
ing methods; moreover, the computational complexity is
reduced.

As presented in Section IV-C, in figures 9 and 10, the
proposed complex M-ELM receiver can achieve the same SE
and BER results as the ones achieved with the complex ELM
method. However, the former is a more efficient receiver,
as this strategy presents less computational complexity than
the latter. The reason why the multilayer strategy presents
less computational complexity than the single-layer ELM
is that we can split the process into smaller matrices. The
complex ELM is made up of a single hidden layer with
L = N, neurons, that is, 64, the same number of BS antennas
dedicated per user in the cell. This means that the internal
processing of this method requires a large matrix operation.
However, with the multilayer strategy, we can establish two
hidden layers with at least 16 neurons in each layer. In this
way, internal processing requires the operation of smaller
matrices.

Splitting the signal processing task into smaller matrix
operations is the primary function of a multilayer strategy.
Therefore, the computational complexity relaxes with the
proposed complex M-ELM receiver. This is the main
contribution of our investigation because the mmWave signal
processing is high, and effective methods are necessary to
reduce complexity.

VI. CONCLUSION

There is a trade-off between the performance of the
BER/SE metrics and the execution time of the MIMO
combining processing with the proposed M-ELM. With only
16 neurons in each of the two configured hidden layers
of the proposed ANN, we can achieve the same SE and
BER results as the standard ELM receiver. Furthermore,
the proposed M-ELM strategy requires less processing time
than the standard ELM receiver to perform the same MIMO
processing. Moreover, the lower processing time required by
the proposed M-ELM is validated by the analytical number of
floating-point operations required by the proposed scheme.
Therefore, the M-ELM method requires a shorter processing
time compared to other state-of-the-art schemes and even
a shorter processing time than traditional linear MIMO
receivers.
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