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A B S T R A C T   

In this paper, we present an extreme learning machine (ELM) neural network designed to perform multiple-input 
multiple-output (MIMO) detection for millimeter-wave (mm-wave) communications operating in the 28 GHz 
frequency band. The ELM strategy can perform online MIMO combining processing. This method does not 
require offline training like with deep neural networks. The proposed technique was compared in terms of the 
achievable bit error rate (BER) and spectral efficiency (SE) to the maximum ratio (MR) and minimum mean 
squared error (MMSE) MIMO detectors, considering an orthogonal frequency-division multiplexing (OFDM) 
uplink scheme based on the fifth generation (5G) New Radio standard. Numerical results show that the ELM 
strategy outperforms the MR and MMSE detectors since this method reduces the inter-user interference effects, 
specifically for low equivalent isotropic radiated power at the receiver during the uplink communication. 
Furthermore, the ELM method requires only 16 % of the floating-point operations required by the MMSE 
detector.   

1. Introduction 

Millimeter wave (mm-wave) communications could take two to five 
years to become a mainstream technology used by end users [1]. This is 
due to the limited range of coverage, which requires a dense deployment 
of radio equipment, resulting in a high investment for mobile service 
providers. However, the fifth generation (5G) ultra-wideband (UWB) 
standard, which defines the mm-wave frequency band for mobile com-
munications, has impressed with the data transfer speeds that can be 
achieved. 

From the operator’s point of view, what is desired is greater coverage 
of the base station (BS) to increase the intercell site distance (ISD), since 
the greater the distance between cells, fewer BSs are required, therefore, 
the capital expenditure (CAPEX) and the operational expenditure 
(OPEX) can be reduced. The author in [2] has determined that a mm- 
wave BS can cover an ISD of 1000 meters, although this is only true 
for the downlink (DL) communication, meaning that this distance is 
possible when the BS transmits towards the users, not when the users 
transmit to the BS. However, in the uplink (UL) communication, the ISD 

distance is reduced to only 250 meters. This phenomenon manifests 
because, in the DL, the BS can transmit the mm-wave signal with a 
higher power in comparison to the one used by the users when trans-
mitting towards the BS. This is because the users use mobile devices that 
are limited in power. Since mm-wave communications occur in both the 
UL and the DL, an ISD of 1000 meters cannot be covered since the UL 
restricts this distance to a quarter of the coverage range of the DL. 

Another challenge during the UL communications with mm-wave 
systems is the inter-user interference, which can reduce the spectral 
efficiency (SE) of the wireless link. This phenomenon is hard to resolve 
with linear multiple-input multiple-output (MIMO) detectors such as the 
maximum ratio (MR) and minimum mean squared error (MMSE) tech-
niques. Therefore, optimized signal processing schemes are required to 
reduce the latency and establish a reliable communication link even for 
systems with low power signals. However, complex techniques suppose 
higher computational complexity. This is where artificial intelligence 
methods become handy since many applications designed with neural 
networks have been successful in optimizing the 5G network [3]. 

On the other hand, in recent years, we have seen great advances in 
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artificial intelligence algorithms like deep neural networks (DNNs) in 
many areas that involve mobile communications. However, the biggest 
obstacle for mm-wave communications is at the network edge, where 
optimized signal processing is required to reduce the latency and 
establish a communication link even at low signal power. 

The work in [4] considers two artificial neural networks (ANNs) 
strategies, namely, the extreme learning machine (ELM) and a multi-
layer perceptron (MLP). Both techniques were used to perform channel 
equalization for mm-wave signals. Although the study is limited to 
single-input single-output (SISO) systems. The ELM strategy can perform 
channel equalization online, whereas the MLP method requires offline 
training and the performance is limited to the algorithm used to train the 
MLP network. 

The work in [5] presents an ELM neural network for orthogonal 
frequency division multiplexing (OFDM) links that do not use MIMO 
technology. On the other hand, the ELM method has been reported to be 
successful on massive MIMO systems, which are fundamental for mm- 
wave communication systems [6]. However, these studies do not 
consider the use of mm-waves in the communication link, where hybrid 
arrays of antennas are the rule, such as partially and fully connected 
arrays, to establish a beamforming link [7]. 

The work in [8] presents the foundation for and ELM design applied 
to massive MIMO systems, which are the base technology for beam-
forming mm-wave systems. However, this work is limited to sub-6 GHz 
bands, where the hybrid beamforming processing is not considered. The 
study in [8] can be also related to the work in [9], where an adaptive 
ELM receiver is designed to handle both the LED nonlinearity and cross- 
LED interference in MIMO LED communications. Here the activation 
function is the sigmoid function and the design was defined in the real 
domain. Both works are limited to the symbol error rate analysis. 

Hybrid beamforming allows the steering of narrow signal beams 
towards users with reduced complexity thanks to the separation of the 
analog and digital domains. This architecture requires the establishment 
of a beamforming link between the BS and multiple users in the network. 
However, beam selection is a time-consuming process [10]. Due to the 
digital processing part of hybrid beamforming, ANNs have the potential 
to adapt to many hybrid array structures and reduce the complexity of 
the signal processing task [11,12]. 

In this study, we propose the use of ELM neural networks to tackle 
the problem of mm-wave links with high path loss, considering a 
partially connected hybrid array of antennas at the BS since this array 
structure is less expensive than a fully connected one and requires 
significantly less power, so is widely used in commercial mm-wave ra-
dios [7,13]. Specifically, we study the problem of detecting massive 
MIMO signals in high path loss scenarios during UL communication. For 
this, we adjusted the equivalent isotropic radiated power (EIRP) be-
tween the BS and the users in the cell. We compared the proposed ELM 
scheme in terms of achievable SE, bit error rate (BER), and number 
floating-point operations to the performance of the MR and MMSE de-
tectors, two common MIMO combining techniques found in the litera-
ture [14]. Numerical results show the ELM design can achieve higher SE 
and lower BER even with a low EIRP link. With this, there is the potential 
to increase the coverage of UL mm-wave communications and increase 
the ISD between BSs. The contributions of this work are summarized as 
follows: 

• We use a fully complex ELM-based detector for mmWave commu-
nications, where the ELM training is performed by learning the 
optimal combiner process as is introduced in 2.1.  

• We test the performance of the proposed ELM detector by changing 
the EIRP of the UL mmWave link. This way, we analyzed the per-
formance for mmWave links with low signal power (EIRP  = 10 dB) 
and high signal power (EIRP  = 20 dB).  

• We proved that the proposed ELM detector automatically adapts to 
the hybrid beamforming of the mmWave system without requiring 
extra configurations. 

The remainder of this work is organized as follows. Section 2 presents 
the mm-wave system and channel model. The proposed ELM neural 
network is outlined in Section 3. In Section 4, the numerical results of 
the proposed solution are presented, whereas the results are discussed in 
Section 5. Finally, concluding remarks are given in Section 6. 

2. System Model 

In this section, we present the mm-wave system and channel model 
considered in this study. 

2.1. Mm-wave system model 

We consider a partially connected hybrid massive MIMO BS which 
communicates with K users based on cyclic prefix (CP) OFDM commu-
nication links, as shown in Fig. 1. 

The left-hand side of Fig. 1 shows a partially connected hybrid array 
mm-wave BS composed of R transceivers (RF chains) and M = RNr an-
tennas. Each RF chain is connected to a subarray of Nr antennas trough 
analog RF precoders (phase shifters), this way, K⩽R users can be 
simultaneously multiplexed with this hybrid structure. The right-hand 
side of Fig. 1 shows the K users, where analog precoding is performed 
over Nt RF paths. At the transmitter (the kth user), a digital baseband 
beamformer (precoder) fBBk ∈ CNt×1 is used to precode Ns data symbols 

followed by an analog precoder FRFk = diag
(

fpar
k1 , f

par
k2 ,…, fpar

kNt

)
, where 

fpar
kNt 

is the RF precoder matrix element for the partially connected hybrid 
array [13,15,7]. We assumed that a beam steering RF codebook is used 
by the BS to select the kth RF combiner, W*

rfk
, during the beam-sweeping 

process, which is required to establish the links between the K multi-
plexed users and the mm-wave BS [16,17]. 

In practical mm-wave systems, the channel state information (CSI) is 
estimated via UL training with pilots transmitted from multiple users 
[18,14]. The combining vector can be found with the estimated CSI, so 
the MIMO detection process can be performed on the received signals in 
the digital domain [19,20]. In this study, we considered the least square 
(LS) channel estimator, a simple and fast way to estimate the CSI 
[21,20]. 

The mm-wave MIMO OFDM system employs n = 1,…,Ns subcarriers 
to transmit the data symbols, where Ns is the number of subcarriers. In 
the UL, the nth subcarrier reference signal yx

k[n] ∈ CNr received at the rth 

RF chain of the BS and transmitted by the kth user is given by 

yx
k[n] =

̅̅̅̅̅ρk
√ W*

rf k
Hk[n]FRFk fBBk [n]xk[n]

+
∑K

j = 1
j ∕= k

̅̅̅̅ρj
√ W*

rf k
Hj[n]FRFj fBBj [n]xj[n] + W*

rf k
vk[n], (1)  

where Hk[n], Hj[n] ∈ CNr×Nt are the nth subcarrier massive MIMO channel 
coefficients established between the kth and jth users and the BS, 
respectively. FRFk fBBk [n] denotes the nth subcarrier precoder for the kth 

user, whereas FRFj fBBj [n] denotes the nth subcarrier precoder for the jth 

interfering user. xk[n] is nth subcarrier transmitted pilot from the kth user, 
whereas xj[n] denotes the nth subcarrier transmitted pilot from the jth 

user. Since all pilots are independent, E
[⃒
⃒xk

⃒
⃒2
]
= ρk for k = 1, 2,…,K, 

and E
[⃒
⃒xj

⃒
⃒2
]
= ρj for j = 1,2,…,K, j ∕= k, where ρk and ρj represent the 

transmission power of the kth and jth users, respectively. Lastly, vk[n] ∈

CNr represents the i.i.d CN

(
0, σ2

vk

)
additive noise vector [15,18]. 

By defining the kth effective channel of the desired user as heffk [n] =
W*

rfk
Hk[n]FRFk fBBk [n], and the jth effective interfering channel as heffj [n] =

W*
rfk

Hj[n]FRFj fBBj [n], the received data signal is given by 
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ys
k[n] = heffk [n]sk[n] +

∑K

j=1
j∕=k

heffj [n]sj[n] +W*
rf k

vk[n], (2)  

where sk[n] denotes the data symbol transmitted from the desired kth 

user, whereas sj[n] represents the data symbols from the jth interfering 
user. 

Therefore, the MIMO detection problem reduces to finding a 
combining vector that recovers the transmitted data symbols as follows 

ŝk[n] = w*
bbk

[n]heffk [n]sk[n]

+
∑K

j = 1
j ∕= k

̅̅̅̅
w

√ *
bbk

[n]heffj [n]sj[n] + w*
bbk

[n]W*
rf k

vk[n], (3)  

where w*
bbk

[n] is the kth baseband (BB) combiner that maximizes the data 
symbol power, forcing to zero the interfering, additive noise, and 
nonlinear distortion signals. This problem is hard to resolve with linear 
MIMO detectors like MR and MMSE. The MR detector maximizes the 
desired signal power, but it does not filter inter-user interference or 
nonlinear distortions. On the other hand, the MMSE detector can 
partially reduce the interference effects, performing better than the MR 
method [22]. Although a complete attenuation of the inter-user inter-
ference and nonlinear distortion effects is desired, which can only be 
achieved with the optimal combiner woptk [n] ∈ CNr×1, which is given by 
[18] 

woptk [n] = argmin E

[⃦
⃦
⃦sk[n] − w*

optk
ys

k[n]
⃦
⃦
⃦

2
]

,

s.t. w*
optk

[n]heffi [n] =

⎧
⎪⎨

⎪⎩

c1, i = k
0, i ∕= k.

(4)  

The optimal combining process in (4) allows to maximize the kth signal 
power, the signal from the desired user, while filtering the interfering 
signals and noise. Linear MIMO combiners, like MR or MMSE, are pro-
cessed with the estimated CSI of kth user. However, the information of 
the interfering sources is not available, so the detection is not optimal. 
Thus, new strategies like ANNs have the potential to perform the MIMO 
detection task by learning the optimal combiner process. 

2.2. Channel model 

For simplicity, we avoid the use of subscripts defined for the channel 

matrices Hk[n], and Hj[n]. Therefore, in this subsection, we describe a 
general mm-Wave MIMO channel. Using the clustered channel model 
described in [18,23], the delay tap dth of discrete-time Nr × Nt channel 
matrix Hd for d = 1,…,Nc is written as 

Hd =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
NrNt

NclNray

√
∑Ncl

η=1

∑Nray

ι=1
gηιar

(
θr

ηι,ϕ
r
ηι
)
ah

t

(
θt

ηι,ϕ
t
ηι
)
, (5)  

where gηι is the complex small-scale fading gain of the ιth ray in the ηth 

scattering cluster, characterized as i.i.d. CN
(
0, σ2

η
)
, and σ2

η denotes the 
average power of the ηth cluster. Ncl is the number of scattering clusters, 
whereas Nray is the number of rays (subpaths). The vectors ar

(
θr

ηι,ϕ
r
ηι
)

and ah
t
(
θt

ηι,ϕt
ηι
)

denote the array response functions, for the receive and 
transmit antenna arrays, with respect to the angles of arrival ϕr

ηι
(
θr

ηι
)

and 
departure ϕt

ηι
(
θt

ηι
)
, respectively. Finally, as in [21], the frequency 

channel response at the subcarrier n, in terms of Nc delay taps in the 
discrete-time domain is given by 

H[n] =
∑Nc

d=1
Hde− j2πn

Ns d. (6)  

3. ELM neural network 

With the proposed ELM strategy, the objective is to detect the MIMO 
signal as well as the optimal combiner in (4). To do so, the ELM can be 
applied in the complex domain taking as input the received pilot signal 
vector Yx

k =
{

yx
k[1],…, yx

k[Ns]
}t and as output the pilot vector xk =

{xk[1],…, xk[Ns]}
t , a priori known at the BS, as is illustrated in Fig. 2. 

This way, only the desired signal is maximized while the interference 
signals are attenuated. 

For the case of hybrid beamforming, channel estimation, and 
therefore MIMO combining must be performed on the digital baseband 
received signal yx

bbk
[s]. Thus, the RF combining matrix must be filtered 

out from yx
k[n], to do so, the operation is given by 

yx
bbk

[n] =
[
Wrf k W*

rf k

]− 1
Wrf k yx

k[n]. (7)  

But, channel estimation is a process that is required by linear MIMO 
detectors, namely, MR and MMSE. However, the ELM neural network 
does not require to perform channel estimation, although this method 
requires to adapt to different beamforming designs, namely, fully con-
nected, partially connected, subconnected, among other hybrid struc-
ture designs, even dynamic hybrid beamforming [24]. In other words, 

 Baseband
Combining

RF 
Chain

RF 
Chain

RF 
Chain

RF 
Chain

Digital DigitalgolanAgolanA

Phase shifter Splitter Adder

    Baseband 
   Precoding

User 1

    Baseband 
   Precoding

User

Fig. 1. Simplified system blocks of an UL multiuser mm-wave system with a partially connected hybrid array of antennas. On the left-hand side is represented the 
mm-wave BS and on the right-hand side are represented K multi-antenna users. 
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there is no need to filter out the RF combining matrix to train the pro-
posed ELM method. 

The advantage of the ELM neural network is that it can perform 
MIMO detection online. Namely, it is not required to train the ELM 
network offline like with traditional DNN strategies [5,6]. DNN algo-
rithms take batches of training data to train a model, the neural network 
then predicts the test sample using the found relationship. This process 
takes considerable computational processing and cannot be performed 
online. Whereas online learning takes an initial guess model and then 
picks up one by one observation from the training data and recalibrates 
the weights of each input parameter. This process allows the algorithm 
to dynamically adapt to new patterns in the data, like different hybrid 
beamforming designs. In this case, the ELM method dynamically adapts 
to the changes in the mmWave channel fast and with low computational 
complexity [25]. 

The kth ELM detector, which consist of L hidden nodes, between the 
input and the output layers is given by xk = Ox,kβk, where βk ∈ CL is the 
output weight vector, and Ox,k ∈ CNs×L represents the hidden layer 
output matrix when the pilot signal matrix Yx

k is used at the input of the 
ELM neural network. Ox,k is given by 

Ox,k =

⎡

⎢
⎢
⎣

a(wt
k1yx

k[1] + bk1) ⋯ a(wt
kLyx

k[1] + bkL)

⋮ ⋱ ⋮
a(wt

k1yx
k[Ns] + bk1) ⋯ a(wt

kLyx
k[Ns] + bkL)

⎤

⎥
⎥
⎦, (8)  

where a(⋅) is the activation function of the hidden layer. kth input 
weights wkn = [wkn1,…,wknNr ]

t
∈ CNr and biases bkn of the nth hidden 

node, for n = 1,…,L, are randomly initialized and fixed without tuning 
for the ELM training step. Specifically, when Ns > L, the output weight 
vector is written as 

βk =
(

Oh
x,kOx,k

)− 1
Oh

x,kxk. (9)  

After the ELM detector is trained, we can use the data signal Ys
k =

{
ys

k[1],…, ys
k[Ns]

}t at the input of the neural network as is illustrated in 
Fig. 2 [8]. Therefore, a new data output weight vector Os,k ∈ CNs×L is 
processed as 

Os,k =

⎡

⎢
⎢
⎣

a(wt
k1ys

k[1] + bk1) ⋯ a(wt
kLys

k[1] + bkL)

⋮ ⋱ ⋮
a(wt

k1ys
k[Ns] + bk1) ⋯ a(wt

kLys
k[Ns] + bkL)

⎤

⎥
⎥
⎦. (10)  

Finally, the last step is to perform MIMO combining with the trained 
ELM output weight vector as follows 

ŝk = Os,kβk, (11)  

where ŝk = {ŝk[1],…, ŝk[Ns]}
t denotes the detected data symbols at the 

output layer of the ELM network [6,26]. It is worth nothing that wkn and 
bkn in (8) are fixed after the ELM training and reused in (10). 

4. Simulation results 

We first define the radio link parameters used in our simulations for 
mm-wave communications with a partially connected hybrid array of 
antennas for the 28 GHz frequency band, based on the 3GPP Release 15 
standard, as summarized in Table 1 [17]. The channel between the K 
user and the BS was simulated with the quasi-deterministic radio 
channel generator (QuaDRiGa) [27], using the mmMAGIC Non-Line-of- 
Sight (NLoS) [28], a cluster channel model developed exclusively for 
mmWave scenarios, as is described in Section 2.2. 

We ran a multiuser mm-wave communication following the 5G NR 
Type I pilot mapping structure, where one OFDM symbol is used for pilot 
mapping, as is illustrated in Fig. 3. 

The pilot structure shown in Fig. 3 allows the multiplexing of up to 
four users. However, up to 12 users can be multiplexed with a different 
pilot mapping structure, and 5G NR defines that pilots are mapped to 
quadrature phase-shift keying (QPSK) modulation. 

For the ELM detector, the pilots must follow the same modulation 

ELM training

ELM combining

Fig. 2. Structure of the ELM detector. The received pilot signal matrix Yx
r and 

the pilot symbols xk are used for online training of the ELM neural network in 
order to find the output weight vector βk, and then the received data symbols Ys

r 
can be directly combined. 

Table 1 
Simulation parameters.  

Parameter Value 

BS height 10 m 
BS position 0, 0 (x,y coordinates in [m])  
Users height 1.5 m for each user  
Users position random to the east-side of the BS 
Channel model mmMagic NLoS 
User device antenna array 

configuration 
dual-antenna devices 

Cell radius 125 m 
Carrier frequency 28 GHz 
Carrier type CP-OFDM (120 kHz of subcarrier spacing) 
Carrier bandwidth 100 MHz 
NR data slot 12 subcarriers per PRB, 14 OFDM symbols per slot/ 

subframe, 66 PRBs 
Occupied subcarriers 792 subcarriers per OFDM symbol 
Channel estimation MMSE 
MIMO processing MR, MMSE and ELM 
Maximum path loss 125.5 dB  

Fully-connected BS antenna properties 
Number of antenna panels 1 
Number of antenna elements 

per panel 
16 × 16 array with dual polarization (256T256R 
per polarization, M = 512)  

Element separation distance 0.55λ  

Number of RF chains/ beams 8 
Peak beam gain (dBi) 27  
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scheme as the data symbols to achieve the maximum wireless perfor-
mance [5,6]. Therefore, in this work, we chose the quadrature phase 
shift keying (QPSK), 16-quadrature amplitude modulation (16-QAM), 
and 64-QAM as the modulation schemes with a channel coding based on 
the low-density parity check (LDPC) scheme with a target code rate of 
449/1024, 616/1024 and 764/1024, respectively [17]. Results are 
different for every modulation scheme; however, 64-QAM is more sen-
sitive to high path loss, like the one present in mm-wave scenarios since 
this modulation requires high SNR values to obtain low BER [6]. 

We set the ELM neural network with a tanh activation function, and 
the weights and biases were arbitrarily generated following a uniform 
distribution in the interval [-1,1], which consists of the activation 
function region of convergence, widely utilized in ANNs [6,5]. We also 
set the number of hidden neurons equal to the number of antennas of the 
partially connected panel array at the BS as L = Nr [6]. With these pa-
rameters, we performed the simulations based on the radio links be-
tween the BS and the users with two fixed EIRPs on the transmitter side. 
The EIRP value is given by [2] 

EIRP = Psensitivity +SNR − Ga +PL, (12)  

where Psensitivity denotes the receiver sensitivity, which is equivalent to 
− 99.2 dBm for mmWave communications. Ga is the receiver antenna 
gain and is given by the peak beam gain, which is 24 dBi, whereas PL 
denotes the path loss generated with the mmMagic channel model of the 
QuaDRiGa simulator [29,27]. For the UL communication, the maximum 
EIRP is 20 dBm for a 100 MHz channel link [2]. 

Figs. 4–6 show the average SE and BER results for a fixed EIRP of 10 
dBm with the QPSK, 16QAM, and 64-QAM modulation schemes, 
respectively. 

Figs. 4–6 show that the ELM detector outperforms the MR and MMSE 
techniques since the achievable BER is significantly smaller for the 
former. Although, the SE results for the QPSK modulation are smaller for 
the ELM detector. The results also show that the ELM method can reli-
ably detect the MIMO signal with smaller BER even for a low EIPR of 10 
dBm. 

Figs. 7–9 show the average SE and BER results for a fixed EIRP of 20 

Fig. 3. 5G NR Type I multiuser pilot mapping. Four users are assigned an antenna port from 1000 to 1003.  
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Fig. 4. Performance of evaluated detector schemes using QPSK modulation and 10 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  
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dBm with the QPSK, 16QAM, and 64-QAM modulation schemes, 
respectively. 

Figs. 7–9 show the MMSE detector presents higher SE, although the 
BER is higher than that obtained with the ELM method. Specifically, For 
the QPSK modulation scheme in Fig. 7, the ELM detector presents no 
BER. For 16- and 64-QAM modulations, the achieved BER of the ELM 

design is smaller than those of the compared methods. On the other 
hand, linear MIMO detectors, namely, MR and MMSE, require a mini-
mum EIRP to achieve higher SE and therefore smaller BER. 

Finally, Table 2 summarizes the number of floating-point operations 
required to implement the MR, MMSE, and ELM MIMO combining 
methods [6]. 
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Fig. 5. Performance of evaluated detector schemes using 16-QAM modulation and 10 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  
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Fig. 6. Performance of evaluated detector schemes using 64-QAM modulation and 10 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  
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Fig. 7. Performance of evaluated detector schemes using QPSK modulation and 20 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  
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Based on the data presented in Table 2, for K = 4,Ns = 792, and 
Nr = L = 64, the ELM detector requires 40390528 floating-point op-
erations, whereas the MR and MMSE detectors require 807840 and 
246774528 operations, respectively. Therefore, the ELM scheme only 
requires 16% of the floating-point operations required by the MMSE 
detector. This reveals that the ELM scheme requires significantly fewer 
operations to function; therefore, supposes less computational 
complexity than the MMSE detector. 

5. Discussion 

As we can see in Section 4, the numerical results for SE are different 
from what we obtained for the BER. As an example, we can see that by 
changing the EIRP from 10 to 20 dB, the SE for the ELM method remains 
the same for QPSK modulation. However, the BER results differ since 

with an EIRP of 10 dB, the ELM method shows low BER, but with an 
EIRP of 20 dB, the BER is zero. 

We see the same behavior in the results for 16-QAM and 64-QAM 
modulation schemes. As we know, the MMSE MIMO detector achieves 
higher SE with a higher EIRP. However, the BER results complement the 
SE, since the BER shows us the number of errors in the bit transmission 
domain. 

The results show us that MIMO detectors like MMSE have the po-
tential to achieve high spectral efficiency, but with high BER when the 
EIRP of the communications link is low. This is due to the interference 
effects since the MMSE detector can partially filter this perturbation. On 
the other hand, the proposed ELM detector presents the same SE for 
different EIRP links, but the BER results are smaller. These results show 
us that the ELM method can filter the interference effects better than the 
compared detectors in this study. However, with low EIRP links, the 
noise effects are noticeable and are still present. 

6. Conclusion 

The proposed ELM MIMO combining method can achieve a higher SE 
as well as a lower BER with a low EIRP power in the UL. Therefore, this 
method can significantly increase the coverage range of mm-wave 
communications, where the path loss is the main limiting factor. Addi-
tionally, the ELM method requires only 16 % of the floating-point 
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Fig. 8. Performance of evaluated detector schemes using 16-QAM modulation and 20 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  
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Fig. 9. Performance of evaluated detector schemes using 64-QAM modulation and 20 dB of EIRP. (a) Spectral efficiency. (b) Bit error rate.  

Table 2 
Floating-point operations of the different MIMO detectors.  

Method Combining vector operations  

MR KNs(4Nr − 1)
MMSE Ns

(
N3

r + N2
r (5K/2 + 2) + Nr(K + 1/2)

)

ELM K
(
L3 + L2(3Ns + 1/2) + L(2Ns − 1/2)

)
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operations required for the MMSE detector. This reveals that the former 
not only achieves better wireless performance for systems with low 
power signals, but it is also characterized by having lower computa-
tional complexity. 
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